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Introduction
Confusing or otherwise unhelpful learner feed-
back creates or perpetuates erroneous beliefs
that the teacher and learner have of each other,
thereby increasing the cognitive burden placed
upon the human teacher. For example, the
robot’s feedback might cause the human to mis-
understand what the learner knows about the
learning objective or how the learner learns. At
the same time—and in addition to the learn-
ing objective—the learner might misunderstand
how the teacher perceives the learner’s task
knowledge and learning processes. To ease
the teaching burden, the learner should pro-
vide feedback that accounts for these misun-
derstandings and elicits efficient teaching from
the human.

One way to account for these erroneous be-
liefs and thereby improve a human’s teaching
efficacy is to leverage Theory of Mind. Theory
of Mind (ToM)—the ability to infer another’s mo-
tives and beliefs by observing their actions—is
often used in AI approaches today [12, 14, 5, 15,
9]. Less explored, however, is Second-order The-
ory of Mind (ToM-2) which includes an aware-
ness that other agents also have a ToM [1, 11].
With this additional awareness, a learner could
model and account for its teacher’s beliefs of the
learner when selecting feedback during a teach-
ing session.

This work endows an AI learner with a ToM-
2 that models perceived rationality as a source

for erroneous beliefs a teacher and learner may
have of one another. It also explores how a
learner can ease teaching burden and improve
teacher efficacy if it selects feedback which ac-
counts for its model of the teacher’s beliefs
about the learner and its learning objective.

Proof of Concept Domain
Consider a turn-based card game played be-
tween a human teacher and robot learner
in which a “rule” governs how multi-featured
cards are sorted into three piles (Figure 1). In
a single round, the teacher plays one such card
into a pile according to the rule, and the robot
responds with an utterance (i.e., “feedback”)
pertaining to one of the features of the rule. The
robot’s goal is to identify the rule which distin-
guishes the piles.

Let’s say the teacher chooses the rule: “Reds
belong in Pile 1. Blues belong in Pile 2. Greens
belong in Pile 3.” In the first round of the
game, the teacher places the “Three Red Di-
amonds” card on Pile 1. What should the
learner infer from this move, and what feedback
will convey the learner’s belief and prompt the
teacher to play an informative next card? Prior
work endows the learner with policies for se-
lecting feedback that optimize volume removal
and information gain [3, 13, 10, 7, 2]. Unfor-
tunately, such optimizations can yield feedback
that causes the teacher to misunderstand what
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the learner knows about the task or how the
learner incorporates information into its rea-
soning processes. In the context of the game,
such optimizations can yield redundant feed-
back that reflects stunted learning (e.g., the
robot selects the same utterances at turn t and
turn t + 1), seemingly-irrelevant feedback that
reflects incorrect learning (e.g., the robot se-
lects an utterance about Pile 3 when the teacher
has focused on Pile 1), or feedback which other-
wise reflects the robot’s erroneous beliefs. Cru-
cially, however, the learner may be closer to the
truth than the human believes, yet because it
optimized its feedback for the learning objective
and didn’t consider the teacher’s beliefs of the
learner, the feedback may compel the teacher
to re-teach or continue teaching concepts which
the robot already mastered. A learner endowed
with a ToM-2 could model what the teacher be-
lieves of the learner and account for those be-
liefs when selecting feedback to mitigate such
misunderstandings (see Figure 1).

Figure 1: A human teaches a robot the [r]ule
for how cards are categorized (e.g., according
to color). Here, the teacher misunderstands
if the robot knows the correct rule r∗. The
robot’s Second-order Theory of Mind models
this misunderstanding and provide feedback
using Confidence Expressions (green text).

1 Methods
To undertake the proposed solution, this work
leverages the Interactive Partially Observable
Markov Decision Process (I-POMDP) as a frame-
work for a robot learner’s ToM-2 [4]. The I-
POMDP augments the POMDP’s notion of state
to an interactive state, which represents both
the states of the environment and models of the
other agents within it. These models can be I-
POMDPs which themselves represent environ-
ment states and models of other agents, and it
is this configuration that enables the I-POMDP
to represent a Second-order Theory of Mind.

With this framework, the learner can model
the teacher’s beliefs about the learner’s task
knowledge and learning processes through the
components which comprise an I-POMDP—
namely, an agent’s observation function, re-
ward function, transition function, and opti-
mization criterion. Of these elements, this work
posits that erroneous beliefs primarily stem
from the teacher’s observation function. More
specifically, a human teacher might observe
and interpret a learner’s feedback in a perfectly-
rational manner, a perfectly-irrational manner,
or somewhere in between. By modeling these
different possibilities for how the teacher per-
ceives the learner’s feedback, the learner can
come to a better understanding of how the the
teacher will interpret its feedback.

At the same time, the teacher may believe the
learner observes and interprets the teacher’s
actions in an irrational fashion. Indeed, prior
work suggests this perceived-irrationality can
manifest as the teacher outright ignoring the
learner’s feedback and playing cards in a sys-
tematic fashion [8]. By modeling the teacher’s
belief of the learner’s observation function, the
learner can identify if the teacher believes the
robot is irrational and choose feedback most
likely to lead the teacher to understand the
robot is, in fact, a rational learner. In turn, the
teacher could play cards more efficiently.

To enable the learner to recognize these
sources of irrationality, this work augments the
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I-POMDP with a discrete set of learnable ob-
servation functions, each of which is a noisily-
rational model whose rationality is inversely-
proportional to a temperature parameter β. By
observing the teacher’s card plays, the learner
will be able to learn the teacher’s degree of ra-
tionality as it also learns the rule governing the
teacher’s actions.

Modeling these sources of irrationality is only
helpful to the teacher if the learner accounts
for them when generating feedback. As such,
this work incorporates Confidence Expressions
(CEs) into the learner’s feedback to convey the
strength of the learner’s stated beliefs. With-
out CEs, feedback can express confidence far
greater than the learner’s actual confidence
about the features it addresses, and this am-
biguous communication can lead the teacher
to misunderstand the learner’s task knowledge
and learning processes. For example, if the
learner says, “Reds belong in Pile 1,” the teacher
might perceive the learner as 100% certain of
its statement. It’s possible, however, that the
learner is still unsure if Reds or Diamonds cat-
egorize that Pile.

CEs convey the learner’s certainty about the
stated features. More specifically, the learner
prepends one of three CEs (“I know,” “I think,”
or “I’m unsure if”) to its feature expression (e.g.,
“Reds belong in Pile 1.”), selecting the one most
reflective of its confidence in the stated fea-
ture. By incorporating CEs into its feedback,
the learner is able to convey its level of cer-
tainty over its task knowledge with the intention
of correcting and preventing teacher misunder-
standings. If we again consider Figure 1, per-
haps the teacher believes the learner will truly
understand the rule only if it sees the complete
set of Red cards in Pile 1. This strategy, however,
is redundant and elicits unnecessary time in-
vestment on the part of the teacher. To mitigate
this extra effort, the robot could say, “I know
Reds belong in Pile 1,” when certain of that fea-
ture. The robot can additionally express its un-
certainty over other features by stating, for ex-
ample, “I’m unsure if Greens belong in Pile 3.”

2 Evaluations

This work will evaluate the utility of endowing a
robot learner with a ToM-2 through simulated
and real-world interactions between teacher
and learner. The evaluations will investigate the
benefits of enabling a learner to (1) identify its
teacher’s sources of irrationality and (2) utilize
CEs when providing feedback during the teach-
ing session. The turn-based card game will be
the domain of study.

Simulation Experiments The first set of ex-
periments will comprise interactions between a
learner and a simulated teacher to investigate
the learner’s ability to identify the teacher’s ra-
tionality and the teacher’s perceived learner ra-
tionality. They will also investigate if this knowl-
edge enables the learner to elicit greater teach-
ing efficacy from its teacher. Each trial will
initialize a teacher with a noisily-rational ob-
servation function, and the learner’s inferred
model will be compared against the ground
truth teacher model for the span of the teaching
session. Additionally, experiments will evaluate
how CEs benefit teacher efficacy, the learner’s
ability to identify a teacher’s rationality, and if
their use can guide a teacher to better under-
standing of the learner’s rationality.

User Study The next set of experiments will
be undertaken through a user study in which
human participants teach a robot learner rules
of varied complexities. As in the simulated in-
teractions, the user study will quantify these
benefits through the number of rounds it takes
the robot to learn the rule in each experimental
condition, as well as the number of times the
teacher incorrectly believes the learner under-
stands the rule. Additionally, subjective met-
rics (e.g., the NASA TLX) will be used to evalu-
ate the cognitive burden imposed by each of the
conditions [6].
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